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Mechanisms of a variety of charge and lattice ordered phases observed in halogen-bridged binuclear metal

complexes are theoretically studied by applying the exact diagonalization and strong-coupling expansion

methods to one- and two-band extended Peierls–Hubbard models. In R4[Pt2(pop)4I]nH2O [R~Na, K, NH4,

(CH3(CH2)7)2NH2, etc., pop~P2O5H2
22] containing charged MMX chains, three electronic phases are

suggested by experiments. We find that the variation of the electronic phases originates not only from

competition between site-diagonal electron–lattice and electron–electron interactions but also from competition

between short-range and long-range electron–electron interactions. On the other hand, in Pt2(RCS2)4I

(R~CH3, n-C4H9) containing neutral MMX chains, a site-off-diagonal electron–lattice interaction and the

absence of counter ions are found to be crucial to produce the recently found, ordered phase. The optical

conductivity spectra are also studied, which directly reflect the electronic phases. Their dependence on the

electronic phase and on model parameters is clarified from the strong-coupling viewpoint.

Introduction

Metal complexes of low-dimensional electronic and crystal
structures have attracted much interest from both chemists and
physicists. Among these, quasi-one-dimensional halogen-
bridged metal complexes have strong electron–lattice and
electron–electron interactions. These interactions compete with
each other to produce a variety of electronic phases. The
electronic properties depend on transition metal (M) atoms,
halogen (X) atoms, ligands, and counter ions. Mononuclear
metal complexes contain chains consisting of repeating MX
units and are called MX chains. Binuclear metal complexes
have chains consisting of repeating MMX units and are called
MMX chains. The electronic phases of the MX chains are
classified into an averaged-valence phase for M~Ni and a
mixed-valence phase for M~Pt and Pd. The former phase is
often called a Mott–Hubbard phase, and the latter a charge-
density-wave phase. Both phases are insulating. The MX
chains have been studied experimentally and theoretically for
some time.1

Meanwhile, studies of MMX chains are still actively ongoing
and novel electronic phases are being discovered. Observed and
suggested electronic phases for MMX chains are schematic-
ally shown in Fig. 1 and classified into an averaged-valence
(AV) phase, a charge-density-wave (CDW) phase, a charge-
polarization (CP) phase, and an alternate-charge-polarization
(ACP) phase. From the valences of the metal atoms, the CDW,
CP, and ACP phases are also called the 2233, 2323, and 2332
phases, respectively. Because electrons are not completely
localized, the formal valences 2 and 3 mean valences 2.52d and
2.5zd, in reality, with 0vdv0.5. The AV and CP phases are
paramagnetic, while the CDW and ACP phases are non-
magnetic. In the CDW phase, the spin gap is expected to be

comparable with the charge gap. Meanwhile, in the ACP phase,
the spin gap is generally much smaller than the charge gap. In
principle, all of the four phases are insulating because of the
finite charge gap.

In this paper, we consider compounds with M~Pt. There are
two classes of MMX chains. i) In R4[Pt2(pop)4X]nH2O with
monovalent cations R, four ligands of pop~P2O5H2

22

surround the binuclear unit. Compounds with X~Cl and Br
are well characterized. The ground states of K4[Pt2(pop)4X]-
nH2O with X~Cl and Br are known to be in the CDW phase.2–5

Meanwhile, compounds with X~I have recently been studied
extensively and show different electronic phases.6–8 The

{Electronic supplementary information (ESI) available: ground-state
phase diagrams of the 18-site two band model for infinitely large KMXM

and for KMXM~0. See http://www.rsc.org/suppdata/jm/b1/b101545l/ Fig. 1 Schematic electronic and lattice structures of MMX chains.
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mechanism of the variation of the electronic phases is clarified
in this paper. ii) In Pt2(RCS2)4I, the ligands surrounding the
binuclear unit are RCS2 with R~CH3, C2H5, n-C4H9, etc.
Among these, the compound with R~CH3 (the ligand is then
dta~CH3CS2) has been studied for many years9 and has been
found to show the AV phase with "metallic" conductivity above
room temperature.10,11 The compound with R~n-C4H9 clearly
shows the ACP phase.12 The difference between the pop and
dta systems is discussed from the theoretical viewpoint in this
paper.

Among the four phases mentioned above, the AV phase has
the smallest charge gap and the best electric conductivity
because electron correlation, more precisely the Mott mechan-
ism, is the origin of the insulating ground state. It is true that
the more degrees of freedom, compared with those in the MX
chains, are responsible for the greater variety of electronic
phases in the MMX chains, but the smaller charge gap appears
to enhance the controllability of relative stability among the
four phases above. As a consequence, electrons are more
delocalized than in the MX chains. Among the four phases
observed or suggested in the MMX chains, the CP and ACP
phases are new and have not been realized in the MX chains.
The ACP phase is regarded as a spin-Peierls phase because the
spin gap is produced by dimerization of the binuclear units.
The CP phase is, on the other hand, quite new. It is accom-
panied by lattice distortion, but it is paramagnetic. These
characteristics are usually incompatible with each other.
Furthermore, the inversion symmetry is spontaneously broken
to have charge polarization, so that ferroelectricity is generally
expected, although it has not yet been observed. This quite new
phase is realized because of a subtle balance between electron–
lattice and electron interactions, as explained in this paper.

Most of the theoretical studies into the origins of the charge
and lattice orders in the MMX chains are rather new. First,
extended Hückel band structure calculations were per-
formed.13,14 Electron–electron interactions are, in principle,
incorporated into renormalized transfer integrals only. The
Hartree–Fock approximation is applied to one-dimensional,
two-band15,16 and one-band17,18 extended Peierls–Hubbard
models. Recently, the Hartree–Fock calculations are extended
to finite-temperature systems.19 These calculations capture the
qualitative aspect of the electronic origin of each phase, but
miss quantum fluctuations that are inherent in one-dimensional
electron systems. Recently, the quantum fluctuations originat-
ing from electron correlation in these models have been
quantitatively taken into account by using the exact diagona-
lization method20,21 and the quantum Monte Carlo method.22

In this paper, we quantitatively treat the electron correlation by
using the exact diagonalization method and analyze the
numerical results with second- and fourth-order perturbation
theories from the strong-coupling limit. Then, the optical
conductivity spectra are calculated in one- and two-band
models for the MMX chains as well as XMMX monomers. It
will be found that these calculations are useful to evaluate
model parameters and to understand the ground and photo-
excited states systematically. We discuss in detail the relevance
of our theoretical results to the experimentally observed
variation of the ground and photoexcited states.

Extended Peierls–Hubbard models

To describe the ground- and excited-state properties, we adopt
extended Peierls–Hubbard models, which are schematically
shown in Fig. 2. The simpler one shown in the upper panel
takes only M dz2 orbitals into account and is called the one-
band model. Their energy levels and transfer integrals depend
on the positions of the X ions,
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b,i,s) creates an electron with spin s at site a (b)
in the ith binuclear unit, h.c. denotes hermitian conjugate,
na,i,s~cz

a,i,sca,i,s (nb,i,s~cz
b,i,scb,i,s) are the number opera-

tors, and na,i~Ssna,i,s (nb,i~Ssnb,i,s). The unit cell contains two
M sites, a and b, and an X site. The distance between the M site
a (b) in the ith unit and its neighboring X site, relative to that in
the undistorted structure, is denoted by ya,i (yb,i). Thus, the
change in the distance between the ith and (iz1)th units is
given by yb,izya,iz1. The nearest-neighbor transfer integral
within the unit is fixed at tMM. Meanwhile, the nearest-
neighbor transfer integral through the X pz orbital, tMXM, is
assumed to be linearly modified by the length change
yb,izya,iz1 with coefficient a. The energy level of the M dz2

orbital is assumed to depend linearly on the change in the MX
bond length with coefficient b. The repulsion strengths are
denoted by UM for the on-site pair of electrons with opposite
spins, VMM for the nearest-neighbor pairs within the unit,
VMXM for the nearest-neighbor pairs accompanied with an X
site in-between, and V2 for the next-nearest-neighbor pairs.
They are not assumed to depend on the positions of the X ions

Fig. 2 One- and two-band models for the MMX chains.
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for simplicity. The elastic constants are denoted by KMX for the
MX bond length, and KMXM for the distance between the
neighboring binuclear units. The latter constant is needed when
counter ions hinder the units from being displaced.

The other model we use for the MMX chains takes M dz2 and
X pz orbitals into account. It is called the two-band model,
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changes in the MX bond lengths, ya, and yb, are the same as
defined in the one-band model. Note, however, the meaning of
the coefficient a is different from that in the one-band model.
That is, in the present two-band model, the transfer integral
between the nearest-neighbor M dz2 and X pz orbitals, tMX (not
tMXM), is assumed to be linearly modified by the MX bond
length change with coefficient a. The meanings of the
parameters tMM, b, UM, VMM, KMX, and KMXM are the same
as in the one-band model. The energy level of the X pz orbital is
denoted by eX, and that of the M dz2 orbital by eM. The one-site
repulsion strength at X sites is denoted by UX. The repulsion
strength between the electrons at nearest-neighbor M and X
sites is denoted by VMX. Here, we drop the VMXM and V2

terms for simplicity since the model already contains many
parameters. The two-band model is reduced to the one-band
model in the limit of infinitely large eM2eX, where all the X pz

orbitals are completely occupied.
In both of the models above, the periodic boundary

condition is imposed. The electronic ground state is determined
by the exact diagonalization method. The lattice displacements
ya and yb are treated as classical variables and determined in a
self-consistent manner with the electronic ground state, unless
otherwise stated, so that the system is in the lowest-energy
configuration.

Kinetic vs. interaction terms

Electronic phases of R4[Pt2(pop)4I]nH2O [R~Na, K, NH4,
(CH3(CH2)7)2NH2, etc., pop~P2O5H2

22] are suggested to be
classified according to the distance between the nearest-
neighbor M atoms accompanied with an X atom in-between,
dMXM.8 In order to study the effects of changing dMXM, we first
obtain ground-state phase diagrams by varying tMXM in the
one-band model. Considering these pop systems containing
charged MMX chains and counter ions, we set KMXM to be
infinitely large, prohibiting displacements of M atoms and
allowing displacements of X atoms only. The site-off-diagonal
electron–lattice coupling a is then irrelevant. As a consequence,

the ACP phase is not realized here. In addition, leaving detailed
studies of competition among the charge-ordered phases until
later, we simply neglect the long-range interactions. Exactly
diagonalizing the one-band model, we show a phase diagram in
the space spanned by tMXM, b, and UM in Fig. 3, where tMM is
set to be unity. Because the parameter sets (a, b, KMX, KMXM)
and (la, lb, l2KMX, l2KMXM) are related by the scaling of ya

and yb and thus equivalent, the specific value of KMX is
insignificant. First of all, tMXM is found to stabilize the AV
phase. In R4[Pt2(pop)4I]nH2O, where electrons are the most
delocalized among X~Cl, Br, and I, the AV phase may appear
for small dMXM because tMXM is expected to become large.
Meanwhile tMXM does not much affect the boundary between
the CDW and CP phases. We show later that this boundary is
more sensitive to tMM.

Electron–lattice vs. electron–electron interactions

In Fig. 3, the CDW phase is stabilized by the site-diagonal
electron–lattice coupling b, while the CP phase is stabilized by
the on-site repulsion UM. Thus, the competition between the
electron–lattice and electron–electron interactions determines
the relative stability of these two charge-ordered phases. This
fact is easily understood with the help of the second-order
perturbation theory from the strong-coupling limit, tMM~
tMXM~a~0. The energies of the CDW and CP phases are
degenerate in the limit when the long-range interactions are
absent. Namely, their energies are both given by 2b|y|z
UMzKMXy2 per binuclear unit. Though the effects of the long-
range interactions are discussed later, it is here noted that VMM

increases the energy of the CDW phase and stabilizes the CP
phase. The second-order processes with respect to tMM shown

Fig. 3 Ground-state phase diagram of the 12-site one-band model for
infinitely large KMXM, (a) in the tMXM–b–UM space, and (b) its cross
section at UM~6. The parameters are tMM~1, a~0, KMX~6,
VMM~0, VMXM~0, and V2~0.
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in Fig. 4 lower the energy by tMM
2/UM in (the spin-polarized

state, or by 2tMM
2/UM in the spin-singlet state, of) the CDW

phase, and by tMM
2/(2b|y|) in the CP phase. That is why the

CDW phase is relatively stable for large b, and the CP phase for
large UM. In a similar manner, the effect of tMXM can be
discussed from the second-order perturbation theory. It does
not affect the relative stability between the CDW and CP
phases. That is why the phase boundary is insensitive to tMXM.
It is noted that, if the long-range interactions are included, the
second-order terms with respect to tMXM for the CDW and CP
phases become different, as presented later just before the
optical conductivity in the one-band model. Even in such a
case, the phase boundary is more sensitive to tMM.

Experimentally, the ground states of K4[Pt2(pop)4X]nH2O
with X~Cl, Br and n~2, 3 are shown to be in the CDW
phase.2–5 In general, when the halogen atom X is either Cl or
Br, so far all the ground states are known to be in the CDW
phase. For X~Cl and Br, the X pz level is so deep that the
nearest-neighbor transfer integral through the X pz orbital is
effectively given by tMXMytMX

2/(eM2eXzUM2UX) in terms
of the two-band model. Because of large eM2eX, the transfer
integral tMXM is expected to be small. Meanwhile, the site-
diagonal electron–lattice coupling b is expected to be large
owing to the short distance between the neighboring M and X
atoms, dMX. Thus, the CDW phase for X~Cl and Br is
understood from the dominance of the electron–lattice
coupling b over the electron–electron interactions, though
the on-site repulsion UM is still strong enough to suppress a
phase with bipolarons discussed later.

In R4[Pt2(pop)4X]nH2O with X~I, depending on the cation
R and on the number of water molecules n, three electronic
phases are suggested to appear: the AV phase, the CDW phase,
and the CP phase in the order of increasing dMXM.8 Though we
have not obtained a phase diagram with the CDW phase
between the other two phases, we believe that, for small dMXM,
the effect of tMXM is larger than those of various interactions,
so that the larger tMXM stabilizes the AV phase. Meanwhile, for
intermediate to large dMXM, the competition between the
electron–lattice and electron–electron interactions discussed
here and/or the competition between the short–range and long-
range electron–electron interactions discussed later determine
the relative stability between the CDW and CP phases. As
dMXM increases, the site-diagonal electron–lattice coupling b
becomes weak, while the on-site repulsion UM would not
change so much. If the two phases compete with each other,
then the effect of b dominates for intermediate dMXM and that
of UM for large dMXM. This partially explains why the CDW
phase appears for intermediate dMXM and the CP phase is
suggested for large dMXM. This variation of the charge-ordered
phases can be explained also by the competition between the
short-range and long-range electron–electron interactions, as
discussed below.

Short-range vs. long-range electron–electron

interactions

Here, the long-range interactions, VMM, VMXM and V2, are
included. The competition is easily understood in the strong-
coupling limit, tMM~tMXM~a~0. The contribution from each
interaction term to the total energy per binuclear unit is listed
on the right-hand side of Fig. 5. The bond-charge-density-wave
(BCDW) phase is introduced at the top here just to explain
the competition. Charge ordering is formally represented by
–M2zM4zLX–M2zM2z–X– there. Both the bond-charge and
(site-)charge densities are modulated in this phase. If the site-
diagonal electron–lattice coupling b is so strong that it
dominates over the on-site repulsion UM, the BCDW phase is
stable, forming a bipolaron lattice. The energy gain from the
electron–lattice coupling b is the largest, approximately given
by 3b|y| per unit, though the magnitudes of the lattice
displacements are not uniform in the lowest-energy configura-
tion. In any case, the BCDW phase is not experimentally
observed probably because it is destabilized by the strong
on-site repulsion UM. The energy loss is also the largest,
(3/2)UM. For a fixed magnitude of the lattice displacements, all
of the CDW, ACP, and CP phases gain energy by b|y| and lose
it by UM. Then, the long-range interactions differentiate their
energies. The CDW phase loses energy by (5/2)VMM, the
ACP phase by (5/2)VMXM, and the CP phase by 5V2.
Otherwise, the energy loss is given by 2VMMz2VMXMz4V2.
When the nearest-neighbor repulsion within the unit VMM is
dominant, the CDW phase is unstable. As the dominant
interaction becomes longer-ranged, the ACP phase and finally
the CP phase become unstable. Since we reasonably expect
UMwVMMwVMXMwV2, the CP phase is the most stable in the
strong-coupling limit if b is weak enough.

In R4[Pt2(pop)4I]nH2O, the CDW phase appears for inter-
mediate dMXM, and the CP phase is suggested for large dMXM.8

First of all, it is unreasonable to assume that only VMXM is
small and that the other repulsion strengths including V2 are
large enough to stabilize the ACP phase. Indeed, as far as
KMXM is infinitely large, the ACP phase was not realized in our
calculations. As dMXM increases, the next-nearest-neighbor

Fig. 4 Second-order processes with respect to tMM and tMXM in the
CDW and CP phases.

Fig. 5 Schematic structures of the electronic phases and the coefficients
of their partial energies per binuclear unit with respect to site-diagonal
electron–lattice coupling b, on-site repulsion UM, nearest-neighbor
repulsion VMM, VMXM, and next-nearest-neighbor repulsion V2, in the
strong-coupling limit.
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repulsion V2 would become weak. Meanwhile, the distance
between the nearest-neighbor M atoms within the unit is almost
unchanged, so that the corresponding nearest-neighbor repul-
sion VMM would not change so much in comparison with V2.
Then, as dMXM increases, the CP phase becomes more stable
relative to the CDW phase. This would be the other reason why
the CDW phase is changed into the CP phase with increasing
dMXM. So far, we have limited the discussions to the case of
infinitely large KMXM, prohibiting displacements of M atoms
and keeping dMXM constant.

Before going to the next section, we point out similarities in
the electronic phases of the MMX chains and those of the
quasi-one-dimensional organic conductors, (TMTTF)2X
(X~PF6, Br) and (TMTSF)2X (X~PF6, ClO4).23,24 In these
organic conductors, TMTTF and TMTSF molecules are
crystallographically dimerized. If we neglect the dimerization,
the p band is 3/4-filled in the electron picture, or 1/4-filled in the
hole picture. Electron–lattice interactions are generally believed
to be weak [though they are necessary in the spin-Peierls phase
of (TMTTF)2PF6] in comparison with electron–electron
interactions. Then, the quasi-one-dimensional organic
conductors correspond to the MMX chains without lattice
distortion. In these organic conductors, the dependence of
physical properties on the donor molecule or on the anion can
be understood as an effect of chemical pressure. On the low-
"pressure" side containing (TMTTF)2X, the systems are well
described by one-dimensional models especially at low tem-
peratures. In (TMTTF)2Br, the ground state is an antiferro-
magnet accompanied by a 4kF charge-density wave: the charge
densities are modulated as rich, poor, rich, poor, . . . (period 2)
as in the CP phase of the MMX chains. On the high-‘‘pressure’’
side containing (TMTSF)2X, the dimerization becomes weak
and the inter-chain transfer integral becomes large. In
(TMTSF)2PF6, the ground state is a 2kF spin-density wave
coexistent with a purely electronic, 2kF charge-density
wave:25,26 the charge densities are modulated as rich, rich,
poor, poor, . . . (period 4) as in the CDW phase of the MMX
chains. The mechanism of the purely electronic, 2kF charge-
density wave is explained by the introduction of next-nearest-
neighbor repulsion,27 as in the present case of the MMX
chains. As far as the charge degrees of freedom are concerned,
the MMX chains and the quasi-one-dimensional organic
conductors are similar in that chemical pressure induces a
transition from the CP phase to the CDW phase. As to the spin
degrees of freedom, the CP phase is paramagnetic, while the
CDW phase is nonmagnetic, contrary to the spin-density-wave
state of (TMTSF)2PF6.

Site-diagonal vs. site-off-diagonal electron–lattice
interactions

The ACP phase is found at low temperatures in Pt2(RCS2)4I
(R~CH3, n-C4H9),11,12 where the MMX chains are neutral.
There is no counter ion that acts as an obstacle to
displacements of M atoms as in R4[Pt2(pop)4I]nH2O. Then,
we set KMXM to be zero. To start with, we simply neglect the
long-range interactions and study the competition between the
site-diagonal (b) and site-off-diagonal (a) electron–lattice
couplings and the effect of the on-site repulsion UM on it.
Exactly diagonalizing the one-band model, we show a phase
diagram on the a–b plane in Fig. 6, where tMM is set to be unity,
tMXM~0.8, and UM~0 at first. Though the present system
without any electron–electron interaction can be solved for
infinitely large system size, we use the same system size as
before to make comparison easy. The specific value of KMX is
again insignificant. When b is small, the CDW phase is stable
only for very small a. As a increases, it is soon replaced by the
ACP phase, where the binuclear units are dimerized. It is
regarded as a spin-Peierls state because a singlet is formed on

the nearest-neighbor M sites accompanied with an X site in-
between in the dimerized binuclear units. When both a and b
are small, the CDW phase is stabilized by b, if b is not so large,
because the CDW phase gains energy from the b term, as
described in the previous section, but the ACP phase does not.
When b is large enough, the BCDW phase appears because its
energy gain from the b term is the largest, as explained in the
previous section.

In Fig. 7, we show how the on-site repulsion UM modifies the
competition between the a and b terms. For small or moderate
a and b, the AV phase appears. As UM increases, all the phase
boundaries are shifted to the large-b side, and consequently the
region of the AV phase is widened. This is because the on-site
repulsion UM favors uniform charge densities, while the site-
diagonal electron–lattice coupling b favors modulation of

Fig. 6 Ground-state phase diagram of the 12-site one-band model for
KMXM~0, on the a–b plane. The parameters are tMM~1, tMXM~0.8,
KMX~6, UM~0, VMM~0, VMXM~0, and V2~0.

Fig. 7 Ground-state phase diagram of the 12-site one-band model for
KMXM~0, (a) in the a–b–UM space, and (b) its cross section at UM~6.
The parameters are tMM~1, tMXM~0.8, KMX~6, VMM~0, VMXM~0,
and V2~0.
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charge densities. Both terms compete with each other. Then,
the BCDW phase is realized only when the b term is strong
enough to dominate over the UM term. The competition above
is easily understood in the unphysical limit of small ionic mass.
In this limit, the lattice displacements instantaneously follow
the motion of electrons so that the b term gives an attractive
interaction to shift UM to UM eff~UM2b2/KMX. This equation
is derived from completing the squares with respect to variables
ya,i, and yb,i. In the present limit of large ionic mass, however,
the lattice displacements are statically shifted to form a
bipolaron lattice, i.e., the BCDW phase when b is large
enough. The situation becomes different when the site-off-
diagonal electron–lattice coupling a increases. It favors
modulation of bond-charge densities. The UM and a terms
do not always compete with each other. In fact, they sometimes
cooperate with each other when modulation of bond-charge
densities is not accompanied with large modulation of
(site-)charge densities.28 That is why the phase boundaries
are not shifted to the large-a side, but to the large-b side, when
UM increases. When a is large enough, the ACP phase is
realized by modulating the distances between the neighboring
binuclear units.

Combined effects of the competitions above

Now we include the long-range interactions VMM, VMXM and
V2: VMM~3 and V2~2 in addition to the parameters in
Fig. 7(b), UM~6. We show phase diagrams in Fig. 8(a) for
VMXM~2, and in Fig. 8(b) for VMXM~3. The AV phase is
destabilized by the long-range interactions, which favor
modulation of charge densities in the purely electronic origin
and compete with the on-site repulsion UM. The ACP phase is
realized in a wide parameter space. The nature of the ACP
phase changes continuously from small-a to large-a ranges. For
small a, electrons are more localized, so that the singlet pair of

electrons are well described in the Heitler–London picture. For
large a, the neighboring M dz2 orbitals through the X pz orbital
are strongly overlapped to form a doubly occupied bonding
orbital, so that the electrons are as in a covalent molecule.
Comparing Fig. 8(a) with Fig. 8(b), one sees that the nearest-
neighbor repulsion through an X site, VMXM, suppresses the
ACP phase and stabilizes the other phases relative to the ACP
phase, as already discussed through the aid of Fig. 5.

In recent experiments, the ACP phase is clearly observed in
Pt2(n-C4H9CS2)4I below 200 K.12 It is indeed nonmagnetic as
expected in the ACP phase. The electronic structure of
Pt2(CH3CS2)4I is also suggested to be the ACP phase below
80 K, though the magnetic susceptibility does not drop at low
temperatures.11 Since the lattice displacements are very small in
the latter case, this electronic state would be close to another
paramagnetic phase such as the AV or CP phase. The CP phase
is actually proposed above 80 K.11 Because the spin excitation
spectrum is gapless in the CP phase, it can generally gain more
free energy than the ACP phase from the entropy term at high
temperatures, so that it is possible from the theoretical
viewpoint. The presence of the CP phase between the high-
temperature AV phase and the low-temperature ACP phase is
also reproduced in the Hartree–Fock approximation for a two-
band model,19 although the charge excitation spectra in the
AV and CP phases are gapless owing to the approximation.
Detailed studies of the finite-temperature CP phase in the dta
system are left for the future since the electron correlation is
essential for the charge gap. The X pz orbitals neglected in this
section are expected to be quantitatively important for the
‘‘metallic’’ (i.e., the resistivity increases with temperature)
conductivity above 300 K (note that a small but finite gap is
observed in the optical conductivity spectrum) and the small
lattice displacements in the ACP phase.

We show phase diagrams containing all of the AV, ACP, CP,
and CDW phases in Fig. 9, which are obtained by exactly
diagonalizing the one-band model. Note that KMXM is not set
to be zero or infinity here. These phase diagrams may become
useful when experimental data are accumulated for the pop
systems in future. The long-range interactions are weaker than
those in Fig. 8. In Fig. 9(a), we use tMM~1, tMXM~0.8,
KMX~6, and UM~6 as before. For small a, as b increases, the
ground state changes from the AV phase, the CP phase, to the
CDW phase, as in the case of infinitely large KMXM. It finally
becomes the BCDW phase for very large b (not shown). For
large enough a, the ACP phase appears as usual. The critical
strength of a for the ACP phase is the smallest at the boundary
between the AV and CP phases. In Fig. 9(b), we change only
KMX among the parameters of Fig. 9(a): KMX~4. The MX
bonds are more easily distorted by the smaller KMX, while the
distances between the neighboring binuclear units are almost
unaffected because KMXM is not changed. Consequently, the
CP and CDW phases are stabilized to shift the phase
boundaries to the small-b side, while the ACP phase is
destabilized relative to these phases and invaded by them. In
other words, some of the ACP states are replaced by the CDW
states for the smaller KMX. If we want to explain the difference
between the pop and dta systems simply by the difference in
KMX (not in KMXM as we do in this paper), we need larger
KMX for the dta systems, contrary to intuition. In Fig. 9(c), we
change only tMXM from the parameters of Fig. 9(a):
tMXM~0.5. The ACP phase is the most affected by this
change and destabilized by the reduction of tMXM. This is
because the energy gain from forming a singlet pair of electrons
(on the nearest-neighbor M sites accompanied by an X site in-
between in the binuclear units) is proportional to tMXM

2 and
thus reduced. Meanwhile, the boundaries between the AV and
CP phases and between the CP and CDW phases are not much
affected by the change of tMXM. It is not regarded as a main
mechanism for the variation of the electronic phases in
R4[Pt2(pop)4I]nH2O.

Fig. 8 Ground-state phase diagrams of the 12-site one-band model for
KMXM~0, on the a–b plane, for (a) VMXM~2, and (b) VMXM~3. The
parameters are tMM~1, tMXM~0.8, KMX~6, UM~6, VMM~3, and
V2~2.
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Inclusion of X pz orbitals

Here, we take X pz orbitals into account, using the two-band
model. We do not focus on the features that appear only in the
two-band model, i.e., for small (eM2eXzUM2UX). These
features have already been discussed on the basis of Hartree–
Fock calculations15,16 and quantum Monte Carlo simula-
tions.22 We here aim at connection with the discussions below
for the optical conductivity in the one- and two-band models.
We will clarify the relation between these models. In this
section, we neglect the long-range interactions for simplicity.

We estimate the effective magnitude of the inter-unit transfer
integral tMXM in the two-band model. For simplicity, the a and
b terms are neglected and the energy levels are calculated in
the isolated M–X–M system. From the level splitting, we have
tMXMy[(Dh

2z8tMX
2)1/22Dh]/4 for the CDW and CP phases.

As Dh decreases, tMXM increases, which corresponds to the
order ClvBrvI.

In Pt2(CH3CS2)4I, the X pz orbitals are suggested to be
important for the high electric conductivity and the large
deviation from double occupancy on the X sites.11 We then set
KMXM to be zero again and find the competition between the
CDW and ACP phases and the absence of the CP phase. The
findings are understood by using the second-order perturbation

theory with respect to tMM, and the fourth-order perturbation
theory with respect to tMX. For KMXM~0, the energies of the
CDW, ACP, and CP phases are all degenerate in the strong-
coupling limit, tMM~tMX~a~0, and given by 2eX 2b|y|zUMz
UXzKMXy2 per binuclear unit. In the ACP phase, the energy
gain from the intra-unit charge-transfer processes is the same as
that in the CP phase, tMM

2/(2b|y|). Its energy gain from the MX
charge-transfer processes is the same as those in the CDW and
CP phases, (tMX za|y|)2/(Dhzb|y|). Therefore, the degeneracy
of the ACP and CP phases is not lifted in the second order with
respect to tMM and tMX. However, in the fourth order with
respect to tMX, the spin-singlet ACP phase gains energy from
the inter-unit charge-transfer processes by 2(tMX za|y|)4{(1/
UM)z[2/(2Dhz2b|y|zUX)]}/(Dhzb|y|)2. Consequently, the CP
phase is always higher in energy owing to the nearest-neighbor
transfer integral strengthened by a, so that it does not appear
for KMXM~0. As in the one-band model, the AV phase appears
for small a and b, with the boundary shifted to the large-b side
with increasing UM. The ACP phase stabilized by a is replaced
by the CDW phase for large b. The region of the ACP phase is
widened by UM.

Optical conductivity in the four-site model for
XMMX monomers

We discussed possible mechanisms for the variation of the
electronic phases in R4[Pt2(pop)4I]nH2O in the previous
sections. However, we cannot uniquely identify the mechanism
until the model parameters are quantitatively evaluated. In this
section, we discuss how to derive the magnitudes of the model
parameters for X~Cl, Br, and I from the optical conductivity
spectra. In general, there are still too many parameters to fit the
spectra. In addition, approximations are unavoidable when
calculating the spectra for MMX chains of infinite length.
Fortunately, there are systems, K4[Pt2(pop)4X2]nH2O (X~Cl,
Br, I), where XMMX units are almost isolated. The distances
within the XMMX monomer are nearly equal to those in the
X–M3zM3z–X unit of the corresponding MMX chains
(X~Cl, Br). Because the XMMX monomer consists of four
sites, the exact spectrum is theoretically obtained for each set of
parameters freely from any approximation. As demonstrated
below, the optical conductivity spectra contain much informa-
tion. From the dependence of the spectrum on the halogen ion,
all peaks can be assigned. Then, we can considerably narrow
the ranges for the magnitudes of the model parameters.

In recent optical conductivity measurements of K4[Pt2-
(pop)4X2]nH2O containing X–M3zM3z–X monomers, three
peaks are observed for each X.8 They are ascribed to the
charge-transfer processes between the M sites (PMM), between
the nearest-neighbor M and X sites (PMX), and between the M
and X sites with the remaining M site in-between (P2MX). These
processes are schematically shown in Fig. 10(a). The four-site
model is explicitly written as

HXMMX ~{
X

s

½tMM (cz
2sc3szh:c:)

ztMX (cz
1sc2szcz

3sc4szh:c:)

zt2MX (cz
1sc3szcz

2sc4szh:c:)�

zeM (n2zn3)zeX (n1zn4)

zUM (n2:n2;zn3:n3;)

zUX (n1:n1;zn4:n4;)

zVMM n2n3zVMX (n1n2zn3n4)

zV2MX (n1n3zn2n4)

where cz
is creates an electron with spin s at site i, h.c. denotes

hermitian conjugate, nis~cz
iscis, and ni~Ssnis. Six electrons

Fig. 9 Ground-state phase diagrams of the 8-site one-band model for
KMXM~1, on the a–b plane, for (a) tMXM~0.8, KMX~6, (b)
tMXM~0.8, KMX~4, and (c) tMXM~0.5, KMX~6. The parameters
are tMM~1, UM~6, VMM~1.5, VMXM~1, and V2~0.5.

J. Mater. Chem., 2001, 11, 2163–2175 2169



are present in the four-site model. Here, we include the transfer
integral and the repulsion strength for the next-nearest-
neighbor M and X sites, t2MX and V2MX, respectively. The
real and finite-frequency part of the conductivity is propor-
tional to the imaginary part of the current–current correlation
function divided by frequency, v.

Before showing detailed results, we will give approximate
relations between the energies and intensities of the three
charge-transfer excitations. The ground state has even parity
and is a spin-singlet, so that it is a linear combination of the
six 1A states in Fig. 10(b). In the strong-coupling limit,
tMM~tMX~t2MX~0, the ground-state energy is given by
E0~22DhzVMM when a constant term is so subtracted that
the fully occupied state has zero energy. Here, the level
difference in the hole picture is given by Dh~eM2eXzUM2

UXz2VMM. Note that the formula of Dh depends on the
coordination numbers, so that it is different from that for the
MMX chains. The optically allowed, excited states have odd
parity and are spin-singlets. There are four such 1B states, as
shown in Fig. 10(b), though one of them has a negligible
intensity. In the strong-coupling limit, the energies of the
remaining three states are given by EMX~2DhzV2MX,
EMM~22DhzUM, and E2MX~2DhzVMX. Then, the excita-
tion energies DEn~En2E0 are given by

DEMX ~V2MX zDh{VMM

DEMM~UM{VMM

DE2MX ~VMX zDh{VMM

The intensities in the optical conductivity spectrum are
proportional to In~|vn|j|0w|2/DEn, where |0w and |nw are
the ground and nth excited states, and j is the paramagnetic
current-density operator. The intensities are calculated in the
lowest-order perturbation theory with respect to tMX, tMM, and
t2MX,

IMX ~2t2
MX=DEMX

IMM~4t2
MM=DEMM

I2MX ~8t2
2MX=DE2MX

From the equations for DEn and In in the strong-coupling limit,
six parameters are independently estimated for each compound
from the fitting to its optical conductivity spectrum, although

quantitative evaluation needs exact diagonalization. Namely,
the energies DEn give three repulsion strengths (plus a
constant), V2MXzDh, UM, and VMXzDh, relative to VMM,
while the intensities In give the squares of the three transfer
integrals, tMX, tMM, and t2MX, divided by the respective
excitation energies.

Relation between parameters obtained from the
optical conductivity

In the optical experiments of K4[Pt2(pop)4X2]nH2O (X~Cl,
Br, I), many relations are found.8 We will describe them below.
First of all, from the dependence on the halogen atom X, the
relation DEMXvDEMMvDE2MX is reasonably derived from
the fact that DEMM should be the most insensitive to X among
the three DEn, and IMM among the three In. The previous
analysis of the excitation energies in the strong-coupling limit
suggests that the relation

V2MX < UM{Dh < VMX

holds for K4[Pt2(pop)4X2]nH2O with X~Cl, Br, and I. The
nearest-neighbor interactions are found to have substantial
strengths. The charge-transfer energies between M and X sites,
DEMX and DE2MX, both increase with decreasing X2 radius:
DEPtIvDEPtBrvDEPtCl and DE2PtIvDE2PtBrvDE2PtCl. For
each X, the excitation intensity becomes larger with increasing
excitation energy: IMXvIMMvI2MX. The intensity of the
lowest-energy excitation decreases with decreasing X2 radius:
IPtIwIPtBrwIPtCl. Meanwhile, the intensity of the highest-
energy excitation shows complex behavior, i.e., it becomes the
largest at X~Br: I2PtIvI2PtBr, I2PtBrwI2PtCl, and I2PtIyI2PtCl.

The level difference in the electron picture eM2eX increases
with decreasing X2 radius: ePt2eIvePt2eBrvePt2eCl. If the
on-site repulsion strength at X sites UX does not change as
much as eM2eX, the level difference in the hole picture Dh also
increases with decreasing X2 radius. This would be one of the
reasons for the relations DEPtIvDEPtBrvDEPtCl and DE2PtIv

DE2PtBrvDE2PtCl. The distance between the neighboring M
and X sites dMX decreases with decreasing X2 radius:
dPtIwdPtBrwdPtCl. It is then reasonable that VMX and V2MX

increase with decreasing X2 radius: VPtIvVPtBrvVPtCl and
V2PtIvV2PtBrvV2PtCl. Meanwhile, the distance between the
neighboring M sites dMM is almost a constant for all X. Because
the repulsion strengths UM and VMM should not change as
much as VMX and V2MX, these relations for VMX and V2MX also
lead to the observed relations for DEMX and DE2MX. If we
assume that tMX does not change so much as DEMX, the above
relation for DEMX leads to the observed relation for IMX,
IPtIwIPtBrwIPtCl. Meanwhile, the observed relation for I2MX is
complex. This would be due to interference among the second-
order process with respect to t2MX and the higher-order
processes with respect to tMX and tMM. In short, except
the complex relation for I2MX, the strong-coupling analysis
explains the observed dependence of the energies and intensities
on the halogen atom X.

From the exact diagonalization of the four-site two-band
model for the XMMX monomers, we show the dependence of
the energies DEn and the intensities In of the three charge-
transfer excitations on the level difference eM2eX in Fig. 11(a),
on the long-range electron–electron interactions VMX and
V2MX in Fig. 11(b), and on the transfer integrals tMX and t2MX

in Fig. 11(c). As discussed above, the excitation energies DEMX

and DE2MX are found to increase with eM2eX, VMX, and V2MX,
while the energy DEMM is insensitive to them. Meanwhile, the
behavior of the excitation intensities is much more complex
than that of the excitation energies: In is not necessarily
proportional to 1/DEn. With increasing tMX and t2MX, I2MX

reasonably increases, but IMX does not increase so much,
and furthermore IMM changes greatly. This is due to the

Fig. 10 (a) Schematic electronic structure and charge-transfer excita-
tions in the XMMX monomer, and (b) basis functions for the
representation, 1A and 1B, corresponding to the ground and photo-
excited states, respectively.
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interference among the second- and higher-order processes
with respect to the transfer integrals. In fact, when we take very
small values for the transfer integrals, we of course reproduce
the lowest-order relations for In shown above. Consequently, it
is rather easy to fit the parameters to the excitation energies,
but not to the excitation intensities. In the optical experiments,
all of the parameters, eM2eX, VMX, V2MX, tMX, and t2MX

change with X, leading to the non-monotonous dependence of
I2MX on the X2 radius. We can say, at least, the numerical
factors 2, 4, and 8 for IMX, IMM, and I2MX, respectively, are
rather important for the relations DEMXvDEMMvDE2MX and
IMXvIMMvI2MX to be compatible with each other. In other
words, we do not need a relation like tMXvtMMvt2MX, in fact,
to have IMXvIMMvI2MX in Fig. 11.

Implication for the mechanism of the phase variation

Compared with any relation concerning the intensities, the
relation derived above from the energies, V2MXvUM2

DhvVMX, is rather robust unless the transfer integrals are
very large. This indicates substantial strengths of the nearest-
neighbor repulsion VMX in the two-band model and of VMXM

(at least for the M3z–X–M3z unit of the ACP phase) in the
one-band model. The intra-unit nearest-neighbor repulsion
VMM would also be substantially strong. Therefore, we believe
that the variety of the electronic phases in R4[Pt2(pop)4I]nH2O
originates from both the competition between the electron–
lattice and electron–electron interactions and that between the
short-range and long-range electron–electron interactions.
As discussed in the following sections, the present scenario
qualitatively explains the experimentally observed variation of
the optical properties also.

Including the long-range repulsion strengths V2MX, VMXM,
and V2, we estimate the energies of the charge-ordered phases
per binuclear unit in the strong-coupling limit, tMM~

tMX~t2MX~tMXM~a~0, of the two-band model (eM~0) as

ECDW ~E1z(5=2)VMMz2VMXMz4V2

EACP~E1z2VMMz(5=2)VMXMz4V2z2KMXMy2

ECP~E1z2VMMz2VMXMz5V2

where

E1~2eX {b yj jzUMzUX z6VMX z6V2MX

zKMX y2

Of course, these energies are reduced to those in the one-band
model in the limit of infinitely large eM2eX. For large KMXM

and VMM, the CP phase is the most stable in the limit. The
relative stability between the CDW and CP phases is again
discussed with the help of the second-order perturbation theory
with respect to tMM and tMXM. In the CDW phase, the energy
gain from the intra-unit charge-transfer processes is tMM

2/
(UM2VMM) (in the spin-polarized state, or 2tMM

2/(UM2VMM)
in the spin-singlet state), and that from the inter-unit processes
is tMXM

2/(2b|y|2VMMz2V2). It is noted that the energy
denominators presented here for the second-order corrections
appear again in the context of charge-transfer excitations in the
next section. In the CP phase, the energy gain from the intra-
unit processes is tMM

2/(2b|y|zVMXM22V2), and that from the
inter-unit processes is tMXM

2/(2b|y|zVMM22V2). Therefore,
the CDW phase becomes stabilized when the site-diagonal
electron–lattice coupling b is strong enough. Note that the
second-order terms with respect to tMXM for these phases are
now different owing to the long-range interactions.

Optical conductivity in the one-band model for MMX
chains

We come back to the MMX chains and calculate the optical
conductivity spectra. The low-energy excitations are now
mainly caused by inter-unit collective charge-transfer pro-
cesses. In fact, the optical absorption for the MMX chains of
K4[Pt2(pop)4Br]nH2O in the CDW phase containing the
X–M3zM3z–X unit29 takes place at a much lower energy
than for the corresponding XMMX monomers of K4[Pt2-
(pop)4Br2]nH2O.8 So, we adopt the one-band model, having
R4[Pt2(pop)4I]nH2O in mind. Here, we focus on differences
among the spectra in the AV, CDW, and CP phases. We do not
calculate the lattice displacements self-consistently but fix them
to be a constant, |y|~y0, although we change the distortion
pattern according to the electronic phase. The elastic constants
are then meaningless. The lattice displacements are ya,i~yb,i~0
in the AV phase, ya,i~yb,i~(21)iy0 in the CDW phase, and
ya,i~2yb,i~y0 in the CP phase. The optical excitation

Fig. 11 Energies DEn and intensities In of the photoexcitations as a function of (a) eM2eX (VMX~1.5, V2MX~0.5, tMX~t2MX~0.55), (b) VMX and
V2MX~VMX/3 (eM2eX~1, tMX~t2MX~0.55), and (c) tMX and t2MX~0.8tMX (VMX~1.5, V2MX~0.5, eM2eX~1). The other parameters are tMM~1,
UM~2, UX~4, and VMM~1.
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processes are schematically represented in Fig. 12 for the CDW
and CP phases. The illustration becomes realistic only near the
strong-coupling limit. In this limit, the excitation energies in the
CDW phase are given by

ECDW
MM ~UM{VMM

ECDW
MXM~2b yj j{VMMz2V2

while those in the CP phase are given by

ECP
MM~2b yj jzVMXM{2V2

ECP
MXM~2b yj jzVMM{2V2

Among the four energies, ECDW
MM is expected to be much

larger than the others because of the strong on-site repulsion
UM.

From the exact diagonalization of the one-band model, we
show optical conductivity spectra in the three phases for
UM~2 in Fig. 13(a), for UM~4 in Fig. 13(b), and for UM~6 in
Fig. 13(c), with varying VMM and VMXM according to the
relations VMM~UM/2 and VMXM~UM/4. As the electron–
electron interactions are not so weak, a single peak appears at a
similar position in both of the AV and CDW phases, while two
peaks generally appear in the CP phase, in the energy range of
the figures. The difference in the number of peaks between the
CDW and CP phases is due to the strong on-site repulsion UM,
as discussed above. We then focus on the CP phase and show
the dependence of the energies and intensities of the two
excitations on the long-range interactions VMM and VMXM in
Fig. 14. The lower energy ECP

MM increases with VMXM, while
the higher energy ECP

MXM increases with VMM, as expected
from the strong-coupling analysis. The excitation intensities are
comparable when the energy difference is small. Meanwhile,
the low-energy excitation is much stronger when the energy
difference is large.

In the optical experiments, so far all R4[Pt2(pop)4I]nH2O
compounds have a single peak below 3 eV.8 Observation of a
single peak is reasonable in the phase suggested to be the AV
phase and in the CDW phases because of the strong on-site
repulsion UM. Meanwhile, observation of a single peak in the
phase suggested to be the CP phase indicates that the nearest-
neighbor repulsion through an X site VMXM is substantially
weaker (at least for the M3z–X–M2z unit of the CP phase)
than the nearest-neighbor repulsion within the unit VMM.
Recall that, in the XMMX monomers, substantially strong
VMX, and consequently strong VMXM for the M3z–X–M3z

unit, are suggested from the optical conductivity. It is quite
possible for the repulsion VMXM to depend on the inter-unit
distance dMXM rather sensitively, though we do not take
account of this effect in order not to make the model more
complex. We can say at least that the repulsion VMM is very
strong, which is actually needed to stabilize the CP phase.

Among the energies of the experimentally observed peaks,
that in the CDW phase is lower than those in the phase
suggested to be the CP phase. The energy difference between
the CDW and CP phases is reproduced in Fig. 13 for each

Fig. 12 Schematic electronic structure and charge-transfer excitations
in the CDW and CP phases of the one-band model.

Fig. 13 Optical conductivity in the AV, CDW, and CP phases of the
12-site one-band model, for (a) UM~2, VMM~1, VMXM~0.5, (b)
UM~4, VMM~2, VMXM~1, and (c) UM~6, VMM~3, VMXM~1.5.
The other parameters are tMM~1, tMXM~0.8, a~0.2, b~4, y0~0.1,
and V2~0.
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parameter set. This is easily understood in the strong-coupling
limit. The low-energy charge-transfer excitation takes place at
ECDW

MXM~2b|y|2VMMz2V2 in the CDW phase, and at
ECP

MM~2b|y|zVMXM22V2 in the CP phase. We concluded
above that the nearest-neighbor repulsion through an X site
VMXM is substantially weaker, at least for the CDW and CP
phases, than the nearest-neighbor repulsion within the unit
VMM. Furthermore, we reasonably expect that the next-
nearest-neighbor repulsion V2 is smaller than VMXM. There-
fore, we can derive the relation ECDW

MXMvECP
MM, which

explains the observed energy difference between the CDW and
CP phases. This relation is intuitively understood in the
following way. In the CDW phase, holes reside at M3zM3z

units. By any charge-transfer process, the hole pair in a unit is
so separated that an electron and a hole attract each other by

the amount of VMM. In the CP phase, however, holes are so
located that the distance between the neighboring holes is the
largest among the possible electronic structures. By any charge-
transfer process, some pairs of holes approach each other, so
that it costs repulsive energy.

Optical conductivity in the two-band model for
MMX chains

We now employ the two-band model to discuss the optical
conductivity spectrum in Pt2(CH3CS2)4I, where the X pz

orbitals are generally expected to be located at a shallow
position and to contribute to the electrical and optical
conductivity. Here, we focus on the dependence of the
spectrum on the model parameter governing the itinerant
character of electrons, tMX. Again, we do not calculate the
lattice displacements self-consistently but fix them to be a
constant, |y|~y0. We consider the ACP phase observed in
Pt2(RCS2)4I (R~CH3, n-C4H9), using ya,i~2yb,i~(21)iy0.
The optical excitation processes are schematically represented
in Fig. 15 for the ACP phase. Though the itineracy of elec-
trons in Pt2(RCS2)4I is higher than that in R4[Pt2(pop)4I]nH2O,
we first analyze the excitation energies in the strong-coupling
limit. The charge-transfer process from an X site to the
neighboring M site PXM costs energy, EACP

XM~Dhz
b|y|zVMX, where the level difference in the hole picture is now
given by Dh~eM2eXzUM2UXz2VMM22VMX. Note that this
equation is different from that in the four-site model because
the coordination numbers are different. The charge-transfer
process within a binuclear unit PMM costs energy,
EACP

MM~2b|y|, in the strong-coupling limit. In the optical
experiment for Pt2(CH3CS2)4I, the peaks are so assigned that
the relation EXMvEMM is satisfied.11 Precisely speaking, an M
d orbital different from the dz2 orbital may be involved, but this
relation is not modified in any case. This relation indicates
DhzVMXvb|y|, i.e., substantial reduction of the level differ-
ence in the hole picture Dh and of the nearest-neighbor
repulsion VMX in comparison with rather small b|y| due to the
small lattice distortion. However, VMX need not be so small, as
shown below for large tMM. From this fact, it is clear that the
strong-coupling analysis does not work for Pt2(RCS2)4I.

From the exact diagonalization of the two-band model, we
show optical conductivity spectra in the ACP phase with
varying tMX in Fig. 16. For small tMX, three peaks correspond-
ing to the three charge-transfer processes in Fig. 15 appear
distinctly. The parameters are chosen to satisfy the relation
EMXMvEXMvEMM, as assigned in the experiment for
Pt2(CH3CS2)4I.11 Since the transfer integral tMM is not so

Fig. 14 Optical conductivity in the CP phase of the 12-site one-band
model, as a function of VMXM, for (a) VMM~2, and (b) VMM~3. The
parameters are tMM~1, tMXM~0.8, a~0.2, b~4, y0~0.1, UM~6, and
V2~0.

Fig. 15 Schematic electronic structure and charge-transfer excitations
in the ACP phase of the two-band model.

Fig. 16 Optical conductivity in the ACP phase of the 18-site two-band
model, as a function of tMX. The parameters are tMM~1, a~1, b~4,
y0~0.1, eM2eX~0.2, UM~4, UX~4, VMM~2, and VMX~2.
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small, the previous estimation of EXM and EMM does not work.
Indeed, in Fig. 16, the used values for Dh, b, and VMX do not
satisfy the relation EACP

XMvEACP
MM for the strong-coupling

limit, but they actually satisfy the relation EXMvEMM in the
spectra. This means that VMX need not be so small as suggested
by the strong-coupling analysis. As the transfer integral
between the neighboring M and X sites tMX increases, the
intensities of PXM and PMM decrease rapidly, and the spectral
weight is concentrated on the inter-unit charge-transfer
excitation PMXM. At the same time, only this excitation
substantially lowers its energy, reflecting the itinerant nature
for large tMM and tMX. In the experiment of Pt2(CH3CS2)4I, the
lowest-energy excitation has a much larger intensity and a
much lower energy than the other two excitations,11 as in
Fig. 16 for large tMX.

Conclusion

We theoretically study the variety of charge and lattice
ordered phases and their respective optical responses in one-
dimensional correlated-electron–lattice systems. One- and
two-band models are used for the MMX chains and a four-
site two-band model for the XMMX monomers. We use the
exact diagonalization method to obtain the numerical results.
The second- and fourth-order perturbation theories with
respect to the transfer integrals as well as the strong-coupling
analysis are found to be very useful in many cases, though not
always, to understand the variation of the electronic phases and
the respective optical conductivity spectra. Various terms in the
model Hamiltonians compete with one another: the kinetic
term controlled by transfer integrals, site-diagonal and site-off-
diagonal electron–lattice interactions, short-range and long-
range electron–electron interactions, and the elastic energies
controlling the modulation of the MX bond lengths and that of
the inter-unit distances.

A variety of electronic phases appear in R4[Pt2(pop)4I]nH2O,
depending on the counter ion and on the number of water
molecules. It is suggested from experiments that the electronic
phases are classified according to the distance between the
neighboring binuclear units dMXM.8 The AV phase is suggested
to appear for small dMXM. This phase is ascribed to the
enhanced kinetic term by the large inter-unit transfer integral.
For larger dMXM, the CDW and CP phases compete with each
other. The CP phase is suggested to appear for large dMXM,
while the CDW phase is realized between the other two phases.
The relative stability between the CDW and CP phases is
determined by a combined effect of competition between
electron–lattice and electron–electron interactions and compe-
tition between short-range and long-range electron–electron
interactions. As dMXM decreases, the site-diagonal electron–
lattice interaction and long-range electron–electron interac-
tions become larger, and their effects become dominant over
the effect of the short-range electron–electron interaction. Thus
the CP phase is reasonably converted to the CDW phase. The
optical conductivity spectrum changes accordingly.

To evaluate the relative importance between the two types of
competition above, we need quantitative estimation of the
model parameters. For this purpose, we study the optical
conductivity spectra of K4[Pt2(pop)4X2]nH2O containing
almost isolated X–M3zM3z–X monomers. Corresponding
MMX chain compounds, K4[Pt2(pop)4X]nH2O with X~Cl
and Br, are fortunately in the CDW phase consisting of
repeating X–M3zM3z–X and M2zM2z units. The depen-
dence of the energies and intensities of three charge-transfer
excitations in the XMMX monomers are reproduced by
appropriate choice of the level difference, the repulsive
strengths between electrons at M and X sites, and the transfer
integrals between M and X orbitals. From the fitting to the
experimentally observed spectra, we find substantially strong

nearest-neighbor repulsion between the neighboring M and X
sites. Consequently, the two types of competition are both
quantitatively important and combined.

In Pt2(RCS2)4I, the electric conductivity is rather high.11 The
itinerant character of electrons is much stronger than in the pop
systems. The main difference between the two systems is that
MMX chains in R4[Pt2(pop)4I]nH2O are charged while those in
Pt2(RCS2)4I are neutral. The former systems need to have
counter ions, which prohibit free modulation of the distances
between the neighboring binuclear units. This strongly
suppresses the appearance of the ACP phase. On the other
hand, the latter systems do not have counter ions so that the
distances between the neighboring binuclear units are easily
modulated by sufficiently strong site-off-diagonal electron–
lattice coupling. As a consequence, the ACP phase appears.
From the optical conductivity spectrum also, it is evident
that the transfer integrals are large and electrons are more
delocalized than in the pop systems. Though the electric
conductivity shows metallic behavior in Pt2(CH3CS2)4I above
room temperature, where the lattice is not distorted, the optical
conductivity spectrum shows a small but finite charge gap.11

This AV phase as well as the AV phase suggested in
R4[Pt2(pop)4I]nH2O for small dMXM is then regarded as a
Mott–Hubbard insulator phase.
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